If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7f^2-9=8f
We move all terms to the left:
7f^2-9-(8f)=0
a = 7; b = -8; c = -9;
Δ = b2-4ac
Δ = -82-4·7·(-9)
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{79}}{2*7}=\frac{8-2\sqrt{79}}{14} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{79}}{2*7}=\frac{8+2\sqrt{79}}{14} $
| 0.75(8b+4)—1=4b+14 | | 9x-7=17x-3 | | 50+x=x | | 88x15=1320 | | 5d-21/6=2/3 | | 9+2p=p+3 | | 10(3x-)=4(5x-10) | | -7u=-14/3 | | 3x^2+7=-8 | | (2n-9)-(2.4n+4)=0 | | x^2-4x-4=3 | | 2+3.50g=5+3.25g* | | 5x+19=2x-2 | | 88=15x+11 | | 12-0.5h=18-2h* | | 3x-5=5+x+10 | | a-14=3a+16* | | 6+12x=12x+6 | | 1p+0.08p=69.12 | | F(10)=15x+10 | | P+14=9-3p | | 2w=7w-40* | | 141x-1=70 | | 3x-5/3x+2=2 | | 5(2x-3)=3(2x-5) | | -15x+8=-15x-7* | | z−–9=72 | | 3y+12=3y+8 | | 180=z+65+3z | | 7(2x-4)=2(7x-4) | | 2x^2+11=161 | | -.25t+30=59.50 |